An exact expression of positive periodic solution for a first-order singular equation
نویسندگان
چکیده
منابع مشابه
Positive Periodic Solutions of Singular First Order Functional Difference Equation
In this paper, we consider the following singular first order functional difference equation Δx(k) = −a(k)x(k) + λb(k)f(x(k − τ(k))), k ∈ Z where f(.) is singular at x = 0. By using a Kranoselskii fixed point theorem, we will establish the existence and multiplicity of positive periodic solutions for the above problem. The results obtained are new, and some examples are given to illustrate our ...
متن کاملOn Fuzzy Solution for Exact Second Order Fuzzy Differential Equation
In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...
متن کاملPositive Periodic Solution for Second-Order Singular Semipositone Differential Equations
and Applied Analysis 3
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملPositive periodic solution for higher-order p-Laplacian neutral singular Rayleigh equation with variable coefficient
where p > , φp(x) = |x|p–x for x = and φp() = , c ∈ Cn(R,R) and c(t + T) ≡ c(t), f is a continuous function defined in R and periodic in t with f (t, ·) = f (t + T , ·) and f (t, ) = , g(t,x) = g(x) + g(t,x), where g : R × (, +∞) → R is an L-Carathéodory function, g(t, ·) = g(t + T , ·), g ∈ C((,∞);R) has a singularity at x = , e : R→ R is a continuous periodic function with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2020
ISSN: 1687-1847
DOI: 10.1186/s13662-020-02986-2